
Copyright © 2016 Axivion GmbH

Clone Management in Practice
IWSC 2016 Osaka

Stefan Bellon
Axivion GmbH

Copyright © 2016 Axivion GmbH

Who am I?

• 1997-2002: Degree in computer science from University of
Stuttgart, Germany

• Diploma Thesis „Vergleich von Techniken zur Erkennung
duplizierten Quellcodes“ (engl. Comparison of techniques for
detecting duplicated source code)

• 2003-2005: Researcher at Programming Languages and
Compiler Group of the Institute of Software Technology at
University of Stuttgart, Germany

• Research Topics: Architecture Checking and Clone Detection

• 2006-2016: Co-Founder and managing director of Axivion
GmbH

Clone Management in Practice – IWSC 2016 Osaka2

Introduction: My Biography

Copyright © 2016 Axivion GmbH

„Vergleich von Techniken zur Erkennung duplizierten Quellcodes“

• 6 researchers, 6 tools:

Clone Management in Practice – IWSC 2016 Osaka3

Introduction: My Diploma Thesis

Researcher Tool Technique

Brenda S. Baker Dup Suffix tree, token based

Ira D. Baxer CloneDR Subtree matching in the AST

Toshihiro Kamiya CCFinder Input transformations, token based

Jens Krinke Duplix Program Dependence Graph

Ettore Merlo CLAN Function metrics and token based

Matthias Rieger Duploc Pattern matching, token based

Copyright © 2016 Axivion GmbH

„Vergleich von Techniken zur Erkennung duplizierten Quellcodes“

• 4 differently sized C and 4 differently sized Java systems

• Human oracle to build reference corpus

• Very (!) short summary of results:

• Benchmark details: http://www.bauhaus-stuttgart.de/clones/

• Result details (talk on 1st IWSC 2002 Montreal):
http://www.sbellon.de/archives/clonesmontreal.pdf.gz

Clone Management in Practice – IWSC 2016 Osaka4

Introduction: My Diploma Thesis

Baker Baxter Kamiya Krinke Merlo Rieger

Recall + - + - - +

Precision - + - - + -

http://www.bauhaus-stuttgart.de/clones/
http://www.sbellon.de/archives/clonesmontreal.pdf.gz

Copyright © 2016 Axivion GmbH

Motivation

• 1st IWSC 2002 Montreal
• How good are tools at detecting software clones?

• Pros and Cons of certain techniques

• 10th IWSC 2016 Osaka
• Detection of software clones is „good enough“ in general

• Usefulness of clones for the user is undecidable for a tool

• User interface to the developer needs more attention now

• New challenge: Managing software clones

• What to do with the clone?

• Who is responsible?

Clone Management in Practice – IWSC 2016 Osaka5

Introduction: My Talk

Copyright © 2016 Axivion GmbH

Overview

• Introduction of Axivion Bauhaus Suite wrt. clone management

• Clone Management to find errors and/or maintenance burden

• Clone Management in product lines

• Clone Detection to check for license compliance

• Demonstration of Axivion Bauhaus Suite

Clone Management in Practice – IWSC 2016 Osaka6

Clone Management in Practice

Copyright © 2016 Axivion GmbH Clone Management in Practice – IWSC 2016 Osaka7

Introduction of Axivion Bauhaus Suite wrt. clone management

Axivion Bauhaus Suite

IDE

Version
Control

Further Data:
• Output of

other tools
• Test data
• etc.

Continuous Integration

Analyses
Delta

Computation

Web Server

Reports

Report
Generator

Dashboard
Data

Warehouse

Copyright © 2016 Axivion GmbH Clone Management in Practice – IWSC 2016 Osaka8

Introduction of Axivion Bauhaus Suite wrt. clone management

Architecture
Verification

Integrated
modeler and
XMI import
interface

Metrics
Monitoring

HIS
Chidamber & Kemerer OOD
Best Practise
Customer specific
...

Clone Detection and
Clone Management

Type I (1:1)
Type II (Changes)
Type III (Changes
+ Add/Delete)

Stylechecks

Misra C:2004
Misra C:2012

Misra C++:2008
Best Practise

Customer specific

Dead Code
Analysis

Reachability
Analysis
Libraries

Cycle
Detection

Calls
Module Dependencies

Includes/Imports
Customer specific

...

Scalable
Platform for

Static Code Analysis
and Defect Detection

Copyright © 2016 Axivion GmbH Clone Management in Practice – IWSC 2016 Osaka9

Introduction of Axivion Bauhaus Suite wrt. clone management

Clone detection tools in the Axivion Bauhaus Suite

• Token-based detection using (P-)suffix trees
(for C, C++, C#, Java, and Ada)

• Syntax-tree-based detection using subtree hashing
(for C, C++, and C#)

All examples and numbers later on are gathered using the
syntax-tree-based clone detection with a minimum clone
fragment length of 30 lines and a minimum clone fragment
weight of 30 nodes in the syntax tree.

Copyright © 2016 Axivion GmbH

Technical issues for users

• Dealing with technically correct type-2 clones,
however, completely uninteresting ones for the user

• Dealing with type-3 clones that even indicate errors

• Responsibility of a clone

• Refactoring of clones

• Visualization of clones

Clone Management in Practice – IWSC 2016 Osaka10

Clone Management to find errors and/or maintenance burden

Copyright © 2016 Axivion GmbH

Dealing with technically correct type-2 clones,
however, completely uninteresting ones for the user

Clone Management in Practice – IWSC 2016 Osaka11

Clone Management to find errors and/or maintenance burden

class ISomething
{
public:

virtual int common_func() = 0;
virtual int new_func() = 0;
virtual void other_func() = 0;
virtual ~ISomething() {}

};

class CMyClass1 : public ISomething
{
public:

int common_func();
int new_func();
void other_func();
virtual ~CMyClass1() {}

};

class CMyClass2 : public ISomething
{
public:

int common_func();
int new_func();
void other_func();
virtual ~CMyClass2() {}

};

Implements Implements

Clone?

Copyright © 2016 Axivion GmbH

Dealing with technically correct type-2 clones,
however, completely uninteresting ones for the user

• Diploma thesis: „No difference regarding cloning and clone
detection between programming languages [C and Java]“

• Revised experience today: C++ is different than Java (and C)
• Separate class definition and method implementations (.hpp, .cpp)

• Class definitions of common base classes are type-2 clones,
but that is due to the language, you cannot avoid it!

• Often not regarded as helpful to get them reported as the compiler itself
enforces consistent changes to child classes if base class changes

• Inconsistent changes may still occur → valuable in some cases anyway!

• (Clones in method implementations are interesting → pull up refactoring)

Clone Management in Practice – IWSC 2016 Osaka12

Clone Management to find errors and/or maintenance burden

Copyright © 2016 Axivion GmbH

Dealing with technically correct type-2 clones,
however, completely uninteresting ones for the user

• Technically type 2, but completely meaningless to the user!

Clone Management in Practice – IWSC 2016 Osaka13

Clone Management to find errors and/or maintenance burden

enum DayOfWeek
{

Everyday = 0,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday

};

enum Direction
{

North = 0,
NorthEast,
East,
SouthEast,
South,
SouthWest,
West,
NorthWest

};

Clone?

enum DayOfWeek
{

Everyday = 0,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday

};

enum Direction
{

North = 0,
NorthEast,
East,
SouthEast,
South,
SouthWest,
West,
NorthWest

};

Copyright © 2016 Axivion GmbH

Dealing with technically correct type-2 clones,
however, completely uninteresting ones for the user

• Technically type 2, but completely meaningless to the user!

Clone Management in Practice – IWSC 2016 Osaka14

Clone Management to find errors and/or maintenance burden

Clone?

char* DayOfWeekToString
(enum DayOfWeek dow)

{
switch (dow)
{
case Everyday: return "*";
case Monday: return "Mo";
case Tuesday: return "Tu";
case Wednesday: return "We";
case Thursday: return "Th";
case Friday: return "Fr";
case Saturday: return "Sa";
case Sunday: return "Su";
default: return NULL;
}

}

char* DirectionToString
(enum Direction dir)

{
switch (dir)
{
case North: return "N";
case NorthEast: return "NE";
case East: return "E";
case SouthEast: return "SE";
case South: return "S";
case SouthWest: return "SW";
case West: return "W";
case NorthWest: return "NW";
default: return NULL;
}

}

char* DayOfWeekToString
(enum DayOfWeek dow)

{
switch (dow)
{
case Everyday: return "*";
case Monday: return "Mo";
case Tuesday: return "Tu”;
case Wednesday: return "We”;
case Thursday: return "Th”;
case Friday: return "Fr”;
case Saturday: return "Sa”;
case Sunday: return "Su”;
default: return NULL;
}

}

char* DirectionToString
(enum Direction dir)

{
switch (dir)
{
case North: return "N”;
case NorthEast: return "NE”;
case East: return "E”;
case SouthEast: return "SE”;
case South: return "S”;
case SouthWest: return "SW”;
case West: return "W”;
case NorthWest: return "NW”;
default: return NULL;
}

}

Copyright © 2016 Axivion GmbH

Dealing with type-3 clones that even indicate errors

• Technically type 3, but quite certainly indicates an error!

Clone Management in Practice – IWSC 2016 Osaka15

Clone Management to find errors and/or maintenance burden

enum CommandX
{

Start = 0,
Stop,
Reset,
LoadConfig,
SaveConfig,
Pause,
DebugMode,
AlertUser

};

enum CommandY
{

Start = 0,
Stop,
Reset,
LoadConfig,
SaveConfig,
Pause,
AlertUser

};

Clone?

Error!

enum CommandX
{

Start = 0,
Stop,
Reset,
LoadConfig,
SaveConfig,
Pause,
DebugMode,
AlertUser

};

Copyright © 2016 Axivion GmbH

Dealing with type-3 clones that even indicate errors

• Technically type 3, but quite certainly indicates an error!

Clone Management in Practice – IWSC 2016 Osaka16

Clone Management to find errors and/or maintenance burden

int calc_sth_x(long int val)
{

int result = 0;
int val2 = calc_sth2_x(val);
if (val != val2)
{

result = diff(val, val2);
}
return result;

}

int calc_sth_y(long int val)
{

int result = 0;
long int val2 = calc_sth2_y(val);
if (val != val2)
{

result = diff(val, val2);
}
return result;

}

Clone?

Error!

int calc_sth_y(long int val)
{

int result = 0;
long int val2 = calc_sth2_y(val);
if (val != val2)
{

result = diff(val, val2);
}
return result;

}

Copyright © 2016 Axivion GmbH

Dealing with type-3 clones that even indicate errors

• Technically type 3, but quite certainly indicates an error!

Clone Management in Practice – IWSC 2016 Osaka17

Clone Management to find errors and/or maintenance burden

void algo_simple(void)
{

for (int i = 0; i < SIZE-1; ++i)
{

arr1[i] = arr1[i+1];
}
synchronize();
for (int i = 0; i < SIZE-1; ++i)
{

arr2[i] = arr2[i+1];
}
for (int i = 0; i < SIZE-1; ++i)
{

// ... work on arr1 and arr2
}

}

void algo_precise(void)
{

for (int i = 0; i < SIZE-1; ++i)
{

arr1[i] = arr1[i+1];
}
for (int i = 0; i < SIZE-1; ++i)
{

arr2[i] = arr2[i+1];
}
synchronize();
for (int i = 0; i < SIZE-1; ++i)
{

// ... work on arr1 and arr2
}

}

Clone?

Error!

void algo_simple(void)
{

for (int i = 0; i < SIZE-1; ++i)
{

arr1[i] = arr1[i+1];
}
synchronize();
for (int i = 0; i < SIZE-1; ++i)
{

arr2[i] = arr2[i+1];
}
for (int i = 0; i < SIZE-1; ++i)
{

// ... work on arr1 and arr2
}

}

void algo_precise(void)
{

for (int i = 0; i < SIZE-1; ++i)
{

arr1[i] = arr1[i+1];
}
for (int i = 0; i < SIZE-1; ++i)
{

arr2[i] = arr2[i+1];
}
synchronize();
for (int i = 0; i < SIZE-1; ++i)
{

// ... work on arr1 and arr2
}

}

Copyright © 2016 Axivion GmbH

Dealing with type-3 clones that even indicate errors

• Technically type 3, but quite certainly indicates an error!

Clone Management in Practice – IWSC 2016 Osaka18

Clone Management to find errors and/or maintenance burden

void algo_simple(void)
{

for (int i = 0; i < SIZE-1; ++i)
{

arr1[i] = arr1[i+1];
}
for (int i = 0; i < SIZE-1; ++i)
{

arr2[i] = arr2[i+1];
}
synchronize();
for (int i = 0; i < SIZE-1; ++i)
{

// ... work on arr1 and arr2
}

}

void algo_precise(void)
{

for (int i = 0; i < SIZE-1; ++i)
{

arr1[i] = arr1[i+1];
}
for (int i = 0; i < SIZE-1; ++i)
{

arr2[i] = arr2[i+1];
}
for (int i = 0; i < SIZE-1; ++i)
{

// ... work on arr1 and arr2
}

}

Clone?

Error!

void algo_simple(void)
{

for (int i = 0; i < SIZE-1; ++i)
{

arr1[i] = arr1[i+1];
}
for (int i = 0; i < SIZE-1; ++i)
{

arr2[i] = arr2[i+1];
}
synchronize();
for (int i = 0; i < SIZE-1; ++i)
{

// ... work on arr1 and arr2
}

}

Copyright © 2016 Axivion GmbH

Technical issues for users

• Type-2 clones
• Most of the time wanted to check for consistent changes in code

• Some (technically correct!) clones however are annoying

• Solutions:
• Threshold value N for number of allowed parametrization

→ still false positives for candidates <= N
→ and missing out valuable candidates > N

• Report them all because tool cannot decide
→ let the user assess value of candidate

Clone Management in Practice – IWSC 2016 Osaka19

Clone Management to find errors and/or maintenance burden

Copyright © 2016 Axivion GmbH

Technical issues for users

• Type-3 clones
• Most of the time unwanted because edit distance is too high and thus

clone candidate far away from being helpful

• Some clones however are strong indicators for coding bugs due to
previous inconsistent changes to type-1/2 clones

• Solutions:
• Threshold value N for number of allowed edit distance

→ still false positives for candidates <= N
→ and missing out valuable candidates > N

• Report them all because tool cannot decide
→ let the user assess value of candidate

Clone Management in Practice – IWSC 2016 Osaka20

Clone Management to find errors and/or maintenance burden

Copyright © 2016 Axivion GmbH

Responsibility of a clone

• The person who introduced the clone
• He or she may be satisfied with his/her code, however, the author(s) of

the cloned code may know why it is a bad idea to clone this code fragment

→ Notify all authors of the involved code fragments

• All authors of the involved code fragments
• Some may not work in the team anymore

• Some may be assigned to other tasks

→ Notify only the creator of the clone

• Solution: Configure per customer!

Clone Management in Practice – IWSC 2016 Osaka21

Clone Management to find errors and/or maintenance burden

Copyright © 2016 Axivion GmbH

Refactoring of clones

• Pro
• Maintenance easier in the future

• Contra
• Possibility to introduce new bugs

• Certified software may not be changed easily

• Refactoring may not be done at the same time as normal development

• Refactoring needs separate budget

• Solution: Do not refactor, but know where your clones are!

Clone Management in Practice – IWSC 2016 Osaka22

Clone Management to find errors and/or maintenance burden

Copyright © 2016 Axivion GmbH

Visualization of clones

• Lots of papers propose fancy visualizations of software clones

• According to customer feedback, fancy visualization of clones
does not help with the daily work of a software developer

• Developer needs clear instructions of what to do

• Developer needs information next to where he/she works
anyway: the source code!

Clone Management in Practice – IWSC 2016 Osaka23

Clone Management to find errors and/or maintenance burden

Copyright © 2016 Axivion GmbH

Advise

• Do not refactor clones in production code
(unless you refactor anyway for other reasons)

• Refactor clones during development of new code

• Use clone management in the IDE for consistent bug removal
(and for consistent changes)

Clone Management in Practice – IWSC 2016 Osaka24

Clone Management to find errors and/or maintenance burden

Copyright © 2016 Axivion GmbH

Clone ratios of industrial software systems

Clone Management in Practice – IWSC 2016 Osaka25

Clone Management to find errors and/or maintenance burden

0

10

20

30

40

50

60

0 500000 1000000 1500000 2000000 2500000 3000000 3500000

C
lo

n
e

ra
ti

o
 in

 %

System size in LOC

Clone ratio per system size (for C and C++ systems)

Copyright © 2016 Axivion GmbH

Clone ratios of industrial software systems (< 500 KLOC)

Clone Management in Practice – IWSC 2016 Osaka26

Clone Management to find errors and/or maintenance burden

0

5

10

15

20

25

30

35

40

45

50

0 50000 100000 150000 200000 250000 300000 350000 400000

C
lo

n
e

ra
ti

o
 in

 %

System size in LOC

Clone ratio per system size (for C and C++ systems)

Copyright © 2016 Axivion GmbH

Clone ratios of industrial software systems

Clone Management in Practice – IWSC 2016 Osaka27

Clone Management to find errors and/or maintenance burden

0

1

2

3

4

5

6

7

8

9

10

[0-5] (5-10] (10-15] (15-20] (20-25] (25-30] (30-35] (35-40] (40-45] (45-50]

N
u

m
b

er
 o

f
sy

st
em

s

Clone ratio in %

Distribution of clone ratios (for C and C++ systems)

Copyright © 2016 Axivion GmbH

Clone ratios of industrial software systems

• Systems between 10 KLOC and 3.3 MLOC

• Systems in C and C++

• Known generated code already filtered out

• Clones of at least 30 lines and 30 tree nodes per code fragment

• Smallest clone ratio encountered (15 KLOC system): 0.00 %

• Largest clone ratio encountered (2.1 MLOC system): 48.74 %

• Clone ratio of smallest system: 31.91 %

• Clone ratio of largest system: 26.49 %

• Average clone ratio: 14.90 %

Clone Management in Practice – IWSC 2016 Osaka28

Clone Management to find errors and/or maintenance burden

Copyright © 2016 Axivion GmbH

How can clone detection help between product variants?

• Main interest in finding „clones of the past“,
after all it is known that two variants are similar

• If products vary very little (if not just parameterization):
• Not a task for clone detection, but rather a task for „diff“

• If products forked in the past, then developed separately:
• Apply clone detection across the variants (i.e., filter out inner clones)

• Filter out type 1 (i.e., common code across the variants)

• Look at type 2 and type 3 to find potential code that needs to be synced

Clone Management in Practice – IWSC 2016 Osaka29

Clone Management in product lines

Copyright © 2016 Axivion GmbH

How can clone detection help between product variants?

• Reality in industrial environment
• Systems in product lines often 100 KLOC or more

• Often up to 40 variants or more of the same system

• Variants developed by separate teams

• No write access to code of other variants

• No write access to code of shared core components

• Problems:
• Cannot change code between variants in sync

• Found bug fixes cannot easily be applied to other variants

• Often developed as separate forks

• Clone Detection not suitable for daily usage

Clone Management in Practice – IWSC 2016 Osaka30

Clone Management in product lines

Copyright © 2016 Axivion GmbH

Technical aspects

• Create fingerprint for reference source code

• Feed fingerprint into reference corpus together with meta data
(e.g., software name, version, license, etc.)

• Create fingerprint for candidate source code

• Emit meta data of matching fingerprints of reference corpus

Clone Management in Practice – IWSC 2016 Osaka31

Clone Detection to check for license compliance

Copyright © 2016 Axivion GmbH

Problems

• What to include in the reference corpus?

• How often to update?

• How to achieve big coverage?

• How to guarantee usefulness of reference corpus?

→ More legal problems than technical ones!

Clone Management in Practice – IWSC 2016 Osaka32

Clone Detection to check for license compliance

Copyright © 2016 Axivion GmbH Clone Management in Practice – IWSC 2016 Osaka33

Demonstration of Axivion Bauhaus Suite

Copyright © 2016 Axivion GmbH

Conclusion

• Clones ARE common in industrial code and thus need attention

• Clone detection techniques are good enough “in general”

• More work needs to be done to distinguish wanted and
unwanted clone candidates – but how?

• Seamless integration into development workflow/IDE essential
→ developers need precise instructions from the tool/workflow

• Managing product lines with clone detection mechanisms not
straight forward

• License compliance checking has more legal problems than
technical ones

Clone Management in Practice – IWSC 2016 Osaka34

Clone Management in Practice

Copyright © 2016 Axivion GmbH

One more thing …

Clone Management in Practice – IWSC 2016 Osaka35

Clone Management in Practice

Copyright © 2016 Axivion GmbH

One more thing …

Clone Management in Practice – IWSC 2016 Osaka36

Clone Management in Practice

… young people do not get the reference to Dolly any more!

